The Transition from Descriptive Statistics to Inferential
Statistics

Elliott Hammer Xavier

University of Louisiana New Orleans, Louisiana
Overview

One of the reasons that other sciences sometimes disparage psychology is that
we often admit that we can’t “prove” support for our theories. Proof is virtually
impossible for psychology researchers to attain because controlling enough
variables to isolate a relationship definitively is, well, virtually impossible. In other
sciences, researchers can regulate conditions for their experiment to a greater
degree than can researchers studying behavior. Chemicals rarely “have a bad
day,” and the structure of a cell is pretty much the same for one person as for any
other. People, however, (and nonhuman animals, for that matter) operate much
less in a vacuum than do the subjects of lab research for biologists, chemists, and
physicists. As a result, psychologists are subject to issues of mood, relationships,
traffic, and the like that affect the performance of our participants.

Assessing Dependability

In the absence of proof, the claims that psychologists make must rely on
assessment of the likelihood that one’s results are dependable. That likelihood
never reaches 100 percent, but it can get very close. How close is close enough to
count on a finding is a matter of some debate, but most researchers agree to a
reasonable degree on 95 percent; such findings would mean that | would have
only a 5 percent chance of being wrong in a claim that | might make about a
relationship between a couple of variables. I'll discuss where this number comes
from in a bit, but keeping that 5 percent value in mind can be helpful. First, let’s
consider a bit further why proof is unattainable and how we can assess the
dependability of our results. Consider a researcher who wants to know if a new
way of teaching math can help students learn math more effectively. The first
thing that researcher might want to do is to assess the math proficiency of the
general population. Even this step presents a bit of a problem in that it would be
impossible to get every member of a population to take a math test. So, what




would the researcher do? First, he or she would gather a sample from the
population that he or she hopes to make a statement about, and that sample
would serve to represent the population for the purposes of the study. This
sample would take the test and provide something of a baseline. Does that
baseline perfectly match the population? Probably not, but it’s the closest we can
get, considering the circumstances. Obviously, the bigger and more random our
sample is, the more closely it resembles the population, and the more
dependable that sample’s mean score is going to be. This effort to gather a
sample to represent the population is indicative of our goals in conducting such
research. We typically don’t care about our sample in and of itself. Instead, what
we care about is the population that that sample represents. It’s one thing to
make a statement about a group of 50 or 1,000 people, but it’s another to be able
extrapolate what we learn about them to the greater population, who are those
people who didn’t participate as part of our sample. This is what inferential
statistics is all about. We infer what the population is like, based on what we
know about our sample. Note that we actually can prove something about our
sample. If we find that our sample averaged 47.5 correct answers on the test, we
have proof about the sample mean. We can be sure how many questions each
test-taker got right in the sample (as long as we calculated correctly). What we
can’t know for sure is what this says about everyone else— the people who
weren’t in the sample. So we take what we know (sample statistics) and infer
what we don’t know about the population (inferential statistics). What we’re
doing is estimating what the population’s values would be, based on what the
sample is like. This process is called parameter estimation because a parameter is
a measurement for the entire population, as opposed to statistics, which refer
only to samples. Because we can rarely know what the population is like, we
estimate, through our inferential statistics.

Using Inferential Statistics

Once we have a mean for our sample, that mean can serve as our best guess of
what our population is like; we have no reason to assume that our sample mean
over- or underestimates the population mean. So, if our sample mean is 47.5, our
best guess of the population mean (parameter estimation again) is 47.5. Why do
we care? Well, this estimated mean might be helpful, but when it really comes in
handy is when we’re trying to do some research, for example, to see if the new




way of teaching math is any good. We would predict that the sample who goes
through the treatment (the new technique, say, teaching math through pictures
instead of numbers) will have a higher mean than the assumed population mean
of 47.5. But how much higher would the mean have to be in order to be
meaningful? Consider that even if the treatment does absolutely nothing, the
treatment group will still almost certainly not score exactly 47.5 because of a bit
of chance fluctuation or mild irregularities in the sample (called sampling error),
such as some especially lucky guesses. In fact, if we are reasonably certain that
the group’s mean will not be 47.5 exactly, there’s a 50 percent chance that it’ll be
higher, and a 50 percent chance that it’ll be lower. So we can’t just look at the
mean and say, “Oh, the treatment sample’s mean is 47.8, so the treatment
works.” Most of us would not be inclined to intuit that such a difference was
important, so we can accept that. However, we also can’t look and say, “Oh, the
treatment sample’s mean is 85, so the treatment works.” Regardless of how big
the difference is, we need to see how likely that sample’s mean is to have
occurred even if the treatment did nothing. So how do we assess the likelihood
that the score from our sample would have occurred simply by chance and not
because the treatment has an effect? Well, first we have to establish our null
hypothesis, which is our assumption that the treatment has no effect. We hope to
reject this null hypothesis; doing so would support our research (or, alternative)
hypothesis, which is our real prediction in the study. Our statistical calculations of
the probability of rejecting the null hypothesis usually depend upon several
factors. The one that we typically have the most control over is the sample size,
symbolized with N. Most statistical formulas adjust so that the larger the N is, the
larger the statistic we are calculating; larger statistical values are more likely to be
beyond our critical value (so called because it’s the value that our statistic must
reach in order to be considered significant), leading us to reject our null
hypothesis. We therefore would like to have a fairly large sample, despite obvious
limits on how many people we can get into our sample. We can also enhance our
ability to reject the null hypothesis by having a fairly strong manipulation and
fairly sensitive measures. Now let’s get back to the .05 value discussed at the
beginning. In research, the number commonly refers to our alpha level, which the
researcher sets; most researchers are willing to set alpha as high as .05, but
typically not higher. We can think of the value as the probability of rejecting the
null hypothesis when we shouldn’t; to do so would be committing a Type | error




(or alpha error, for obvious reasons). Clearly, we would like this probability to be
as low as possible because we would like to avoid committing a Type | error. So
why not set it even lower? We usually don’t set it lower at the outset because
there is a major trade-off. If, for example, we set alpha very low (say, .0001), we
obviously have a very low probability of committing a Type | error. That’s good.
But, we also make it extremely difficult to reject the null hypothesis at all because
the critical value in such a situation is so large; our calculated value (r, t, F, etc.)
would have to be untenably high in order to be statistically significant. It’s so high
and difficult to obtain that we may miss some real effects, and we don’t reject the
null hypothesis even if we should. Missing those real effects is called committing a
Type Il error (or beta error). By setting alpha at .05, we are liberal enough that we
are confident about finding an effect if one is really there, but we’re conservative
enough that we’ll be wrong only 1 out of every 20 times that we reject the null
hypothesis. Given the trade-offs, most researchers abide by this convention. The
table below summarizes how our decisions to reject or retain the null hypothesis
can be correct or incorrect, given the true situation that we are trying to infer.

In Reality

Null Hypothesis is
True (treatment

Null Hypothesis is
False (treatment

doesn’t work) does work)
Incorrect
Reject Null Decision; Type | Correct Decision
Decision Based on | Hypothesis Error (probability
Statistical = alpha)
Information Decision Incorrect
Retain Null Correct Decision Decision; Type i
Hypothesis Error

What does all this have to do with the proof problem that elicits disrespect from
some researchers in other scientific disciplines? In reality, the null hypothesis is
either true or false. That is, the treatment really does have an effect, or it doesn’t.
Two variables are either really related to one another, or they aren’t. How do we
know? We don’t, because the null hypothesis pertains to the population, which
we’ll never know for sure. As a consequence, when we make our decision to




reject the null hypothesis or not, we can’t be sure we’re making the right
decision. The right decision for a false null hypothesis would be to reject it.
However, we make this decision based on our sample, not the population, so
rejecting the null hypothesis is a bit of an educated guess (based on those
probabilities) of what the population is like. It’s not the same as knowing what the
population is like. Similarly, when we retain the null hypothesis, we don’t know
for sure if we’ve made the correct decision either. Why? Once again, because we
don’t know whether the null hypothesis is, in fact, true, which is our assumption
when we retain the null hypothesis.

Conclusion

In reality, we may not be able to prove our predictions, but we can determine
how reliable our results are. If a researcher set a reasonably low alpha level and
conducted the study appropriately, then critics would not have a very strong case
in countering the findings. So even in the absence of proof, we can support the
conclusions to which our data lead us, and we can determine the likelihood of our
being wrong. This absence of proof also serves as encouragement for replication,
which further strengthens our claims. Just as a large sample can be more
convincing than a small one, a lot of studies can be much more convincing than
one.




